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ABSTRACT

In this work, we study the implementation of magnetorheological fluid (MRF) to the semi-active suspension. Owing to the
nonlinear hysteretic phenomenon, the analysis and synthesis of a controller are not trivial. The kinematic energy and spring
potential function of the suspension system plus an integral term of the hysteretic component of an MR damper is chosen as the
Lyaupnov function to verify the stability and dissipativity of the system. Then, a multi-level controller, which is constructed in
virtue of stability analysis, turns out to be effective in vibration suppression. Through numerical examples, the controller is shown
to be robust. In addition, the controller algorithm is simple and easy to implement, requiring only the measurements of relative
displacement and velocity between sprung and unsprung masses, along with the damping force of the MR damper.
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I. INTRODUCTION

For years, vibration attenuation of various dynamic
systems has received considerable attention from both aca-
demia and industry. In the automobile industry, the perceived
comfort level and ride stability of a vehicle are two of the
important factors in a subjective evaluation of a vehicle, and
the “ride” of a motor vehicle is most commonly measured by
the acceleration of the body [1–3]. There are many aspects of
a vehicle that influence these two properties, the most impor-
tant of which are the primary suspension components, which
isolate the frame of the vehicle from the axle and wheel
assemblies. In the design of a conventional primary suspen-
sion system, there always is a trade-off between the two
quantities: ride comfort and vehicle handling (safety).

If a primary suspension is designed to optimize the
handling and stability of the vehicle, the operator often per-
ceives the ride to be rough and uncomfortable. On the other
hand, if the suspension is designed for ride comfort alone, the
vehicle may not be stable during maneuvers. As such, the
performance of primary suspensions is always defined by
the compromise between ride and handling.

The concept of semi-active suspension and semi-active
vibration control in connection with the power consumed was
introduced by Karnopp [4]. A semi-active suspension consists
of a spring and a damper but, unlike a passive suspension, the

value of the damper coefficient “c” can be controlled and
updated. Various semi-active devices have been proposed to
dissipate vibration energy in a structural or vehicle suspen-
sion system [5]. The magnetorheological (MR) dampers are
new devices that use MR fluid to alter the damping coeffi-
cient. These fluids demonstrate dramatic changes in their
rheological behaviors in response to a magnetic field.

To control the MR dampers, various control strategies
have been proposed in the past two decades, but most of them
are either complicated (in the sense of complexity of the
algorithm, needing more CPU time, memory, etc.) or no
direct stability analysis is provided, for example, sliding mode
control [6,7] (needs an adequate dynamic reference model),
H∞ control (needs an inverse model of MR damper [8], a state
feedback type controller [9], etc.), clipped-optimal control
[10] (on-off type, needs another desired control force, hence
has no direct stability analysis). In contrast, the proposed
controller, which is designed to dissipate the system (quarter
car and MR damper) energy at the maximum rate, has the
feature of simplicity, and it is obtained directly from the
stability analysis of the closed-loop suspension system. To
reduce the computational burden, the maximum input voltage
is divided into finite levels, then the one that maximizes the
dissipation of system energy is chosen. In the meantime, the
stability analysis also explains why we need the measure-
ments of relative displacement and velocity between sprung
and unsprung masses, and the damping force of the MR
damper.

This paper is organized as follows. First, we construct
the quarter vehicle model with an MR damper utilizing a
modified Bouc-Wen model in Section II. Then, the stability
analysis is conducted in Section III, after that a multi-level
dissipative controller is proposed to suppress the vehicle
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vibration. Finally, three numerical examples are used to dem-
onstrate the effectiveness of the controller.

II. QUARTER VEHICLE MODEL WITH
MR DAMPER

2.1 Quarter vehicle model

As the vertically oscillating behavior of a vehicle is con-
sidered, we investigate the response of vertical dynamics. The
response can be described mathematically with a relatively
simple set of dynamic equations known as a quarter-car model.
The frequency response of the quarter car extends from approxi-
mately 0.5 to 20 Hz with some emphasis on roughness at the
body bounce frequency and the axle resonance frequency. The
rationale favoring the quarter car is the fact that it covers the
appropriate frequency range responsible for exciting vehicle
vibrations and emphasizes those modal resonances [1].

The equations of motion of the quarter-car model
depicted in Fig. 1a can be written as
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in which the quantities

m1, m2 are the masses of vehicle body, wheel, and associated
components,
xs, xu denote vertical displacements of m1 and m2,
xg is the road disturbance,
ks, cs represent the stiffness and damping of the uncontrolled
suspension, and
kt, ct denote the stiffness, damping of the tire.

For convenience, further define the relative state vector:
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Then the equations of motion can be reformulated as:
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2.2 Modified Bouc-Wen MR damper model

A modified Bouc-Wen model (see Fig. 1b) for predict-
ing the response of the MR damper in the region of the yield
point, which was proposed by Spencer [5], is adopted and
reformulated as follows:

� � �x y
c c

k x y z c xP1
0 1

0 1 1 1
1− =
+

− − − +[ ]( ) ,α (3)

(a) Quarter vehicle suspension model.

(b) Modified B-W model.

Fig. 1. Quarter vehicle with MR damper suspension system.
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The force exerted by the MRF damper, Frh, is given by
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where

x1 − y and z are the internal relative displacement and hyster-
etic component of the MR damper, respectively,
x0 corresponds to the initial displacement,
δ, β, γ and n are positive constant parameters, and α is a
scaling value for Bouc-Wen model, and
k0, k1 are spring constants, c0, c1 are damping coefficients.

The voltage dependent parameters are modeled by

α α α= + = + = +a b a b a bu c c c u c c c u, , ,0 0 0 1 1 1

where αa, αb, α0a, α0b and c1a, c1b are positive constants.
Furthermore, the command voltage is accounted for through
the first-order filter:

�u u v u= − − =η( ), ( ) ,0 0 (6)

where v is the command voltage sent to the current driver and
η is a positive number that reflects the time lag of the MR
damper. To reflect the real situation, the command input v is
confined to be finite positive. As a result, u is also limited to
be positive finite; that is,

0 0≤ ≤ ≤ ≤v V u Vmax max,and

where Vmax is the maximum voltage to the current driver
associated with the saturation of the magnetic field in the MR
fluid damper. It follows that all of the related parameters α, c0,
and c1 are all finite positive as well.

Remark 1. The original form for �y proposed by Spencer
was motivated by the force balance, as shown in the following
(with moving x2):

� � �y
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Equations (3)–(5) make it clear that the inputs to the modified
Bouc-Wen model are xP1, �xP1 and the state variables are x1 − y
and z.

III. STABILITY ANALYSIS AND
CONTROLLER SYNTHESIS

3.1 System stability

Although it is well-known that an MR damper is a
dissipative device, to the best of authors’ knowledge, a direct

proof of this property is still unobtainable. Hence, in this
section, we prove this fundamental property of the MR
damper when implemented in a vehicle suspension system.

On the (x1 − y, z)-plane, there are two sets of trajecto-
ries, which are determined by either one of the following two
differential equations:
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where C1 and C2 are constants that depend on initial
conditions, and
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A general bounded input bounded output (BIBO) sta-
bility of the Bouc-Wen model proven in [11] is given in the
following lemma, which is needed for the proof of the main
theorem, for completeness.

Lemma 1. Consider the MR damper system equation (4) ,
and let x1(t) − y(t) be a C1 input signal.

1. If β − γ ≤ 0, then |z(t)| ≤ max{|z(0)|, zm}, t ≥ 0 for all
initial condition z(0) ∈ R.

2. If β − γ > 0 and the initial condition |z(0)| ≤ zM, then
|z(t)| ≤ max{|z(0)|, zm}, t ≥ 0.

The following is the main theorem.

Theorem 1. The quarter-car system (2) with the passive MR
damper defined by (3) , (4) , and (5) is dissipative with the
supply rate − + +[ ( ) ]m x m m x xP P g1 1 1 2 2� � �� , if 1) β − γ ≤ 0, or 2)
β − γ > 0 and |z(0)| < zm.

Proof. Define the Lyapunov candidate function for the
quarter car model as

V x M x x K xqc P P P P P P� � �
1

2

1

2
T T+ . (7)
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It follows immediately that the time derivative of Vqc along
the system trajectories is

� � � � � � ��V x C x x F m x m m x xqc P P P P rh P P g= − − − + +T
1 1 1 1 2 2[ ( ) ] ,

where the power consumed by the MR damper can be written
in detail as
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Two cases are considered in the following.

Case 1. β − γ ≤ 0: A naive choice of the Lyapunov candidate
function for the MR damper is
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This is because the third term in the above is negative when
z x y( )� �1 − is either positive or negative.

Case 2. β − γ > 0,|z(0)| < zm: In this case, a Lyapunov
candidate function for the MR damper is chosen to be:
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Since |z(0)| < zm, according to Lemma 1, we have |z(t)| ≤ zm for
all t ≥ 0, which assures the (local) positive definiteness of Vrh.
It can be shown that

� � �V x F Vrh P rh a= +1 ,

which renders
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From the above two cases, we conclude that system (2)
is dissipative with respect to supplied rate
− + +[ ( ) ]m x m m x xP P g1 1 1 2 2� � �� under the given conditions. Ë

Remark 2. It is worthy to point out that, in Case 1 of
Theorem 1, if the initial condition of z satisfies |z(0)| < zm,
then the Lyapunov function (9) can also be adopted in this
case, which in turn yields the same time derivative �V as given
by (10).

3.2 A Lyapunov function based multi-level
damper controller

From a practical perspective, it is reasonable to assume
that |z(0)| < zm; hence, the Lyapunov function (9) is adopted
for controller synthesis. The implementation of (5) to the
second term on the right hand side of (10) renders:
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The above expression suggests that the input function v take
the form

v v x x F uP P rh= ( , , , ),1 1�

which indicates that the measurements needed for
constructing the feedback controller are the relative
displacement, xP1, and velocity, �xP1, between the sprung and
unsprung masses of vehicle, and the damping force, Frh, of
MR damper. While the input voltage u is determined by
minimizing the augmented function �Va , that is to dissipate the
system energy (Vqc + Vrh) as fast as possible. Owing to the fast
dynamics of the command voltage (6) , it is fair to assume
that u = v. Hence, a simple multi-level controller is proposed
as follows:

v
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where N is the number of levels that the input voltage is
divided into. To have a smooth input voltage, a first order

filter,
1

1τ vs +
, may be augmented to the damper controller.

Simulink block diagrams for the closed-loop system and
controller are given in Fig. 2 to illustrate the usage of the
proposed controller.

Remark 3. Implementing the first equation of (1) and the
second equation of (2) on (10) yield:
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Fig. 2. Simulink block diagrams for closed-loop system
configuration.

Table I. Quarter-car model parameters [7].

Parameter Value

m1 372 kg
m2 45 kg
ks 40 kN/m
kt 190 kN/m
cs 0 N s/m
ct 0 N s/m

Table II. Parameters for the MR damper RD-1005-1 [7].

Coeff. Coeff.

αa 12441 N/m c a0 784 N s/m
αb 38430 N/m V c b0 1803 N s/m V
β 2059020 m−2 c a1 14649 N s/m
γ 136320 m−2 c b1 34622 N s/m V
δ 58 n 2
η 190 s−1 x0 0 m
k0 3610 N/m k1 840 N/m
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(a) Bump excitation.
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(b) Grade C random road profile.
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(c) Sinusoidal road profile.

Fig. 3. Road profiles.
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where ζ � �� ��x x x x F xP P rh1 1 2 2 0[ ]T, and Q is the
corresponding positive semi-definite matrix. This indicates
that the minimized quadratic performance index is indeed the
linear combination of ��x1 (corresponding to ride comfort), xP1

(corresponding to suspension deflection), xP2 (corresponding
to road holding ability), ��x2 (wheel acceleration), and the MR
damper force Frh.

Then, integrating (12) from t = 0 to t = T results in:

V T V m x m m x x dt Q dtP P g

T T
( ) ( ) [ ( ) ] .− + + + = −∫ ∫0 1 1 1 2 2

0 0
� � �� ζ ζT

Dividing the above equation by [ ( ) ]m x m m x x dtP P g

T

1 1 1 2 2
0

� � ��+ +∫
and choosing V(0) = 0 give:

Fig. 4. Responses of sprung and unsprung masses of the quarter
car model with an MR damper and multi-level controller
under bump excitation when c0 is replaced by 0.85c0, c1

by 0.75c1, and k1 by 0.80k1 in �Va.

Fig. 5. Damping force and input voltage of MR damper with
multi-level controller when c0 is replaced by 0.85c0, c1 by
0.75c1, and k1 by 0.80k1 in �Va.

Fig. 6. Responses of sprung and unsprung masses of the
quarter-car model under bump excitation for skyhook
controller with csky = 100.

Fig. 7. System response of the quarter-car vehicle model with an
MR damper and a Lyapunov based multi-level controller
when subject to a Grade C random road excitation.
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Note that V(T) ≥ 0,∀T > 0. If the input energy
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0� � �� , then the ratio between

output and input energy is given by

Fig. 8. Damping force and input voltage of an MR damper with
a Lyapunov based multi-level controller when subject to
sinusoidal road excitation.

Fig. 9. Phase plot of (x1 − y, z) of an MR damper with a
Lyapunov based multi-level controller when subject to a
Grade C random road excitation.

Table III. RMS analysis for Grade C road excitation tests ((11)*:
in �Va replace c0 by 0.85c0, c1 by 0.75c1, k1 by 0.80k1.)

Controller ��x1 (m/s2) xP1(m) xP2(m)

v = 0 0.6706 0.0035 0.0030
v = 2 1.4009 0.0017 0.0030
Skyhook (csky = 100) 0.8840 0.0027 0.0028
(11)* 1.0952 0.0019 0.0025

Fig. 10. System response of the quarter-car vehicle model with
MR damper and a skyhook controller when subject to a
Grade C random road excitation.

Fig. 11. Damping force and input voltage of an MR damper
with a skyhook controller when subject to a Grade C
random road excitation.
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which is impossible. Consequently, the above analysis
indicates that the constructed controller is also robust in the

sense that the H∞ norm [9] like function (14) is smaller than
or equal to 1.

IV. NUMERICAL EXAMPLE

Consider the quarter car and an MR damper model with
the parameters defined by Tables I and II, respectively [7].
Assume that the maximum input voltage of the MR damper is
Vmax = 2.0V. Three kinds of road profile inputs are considered
in this example (see Fig. 3).

Fig. 12. Phase plot of (x1 − y, z) of an MR damper with a
skyhook controller when subject to a Grade C random
road excitation.

Fig. 13. System response of the quarter-car vehicle model with
MR damper and a constant input voltage v = 0 when
subject to a Grade C random road excitation.

Fig. 14. Damping force and input voltage of an MR damper
with a constant input voltage v = 0 when subject to a
Grade C random road excitation.

Fig. 15. Phase plot of (x1 − y, z) of an MR damper with a
constant voltage v − 0 when subject to a Grade C
random road excitation.
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4.1 Case I: 0.03 m height bump disturbance

Let the vehicle be subject to a bump excitation with
amplitude 0.03 m, as shown in Fig. 3a. Then, we implement
the above controller (11) along with a first-order filter in the
system, and let N = 4, τv = 0.02 seconds. To demonstrate the
robustness of the proposed controller, for illustration pur-
poses, in �Va of (11) , we replace c0 by 0.85c0, c1 by 0.75c1, and
k1 by 0.80k1. The corresponding responses of sprung mass
and unsprung mass, force, and input voltage history are
shown in Figs 4 and 5 . Note that the “ride” of a motor vehicle
is most commonly measured by the acceleration on the body
[1,2]. For comparison purposes, the responses of the case
with a skyhook controller

v
c x x xsky P=

≥⎧
⎨
⎩

� � �1 1 1 0

0

, ,

, .otherwise
(15)

are given in Fig. 6 (in which csky = 100 for better matching the
responses of sprung mass in Fig. 4 ). As we can tell from the
given results, the proposed controller leads to a smaller
acceleration of unsprung mass. In addition, compared to the
results shown in [7], the controller (11) outperforms that of
[7], in the sense of having less settling time and having
smaller peak values of response and acceleration of sprung
mass. In addition, the proposed algorithm is simple, and no
reference model is required.

Fig. 16. System response of the quarter-car vehicle model with
MR damper and a constant input voltage v = 2 when
subject to a Grade C random road excitation.

Fig. 17. Damping force and input voltage of an MR damper
with a constant input voltage v = 2 when subject to a
Grade C random road excitation.

Fig. 18. Phase plot of (x1 − y, z) of an MR damper with a
constant voltage v = 2 when subject to a Grade C
random road excitation.

Fig. 19. System response of the quarter-car vehicle model with
an MR damper and a skyhook controller when subject
to a sinusoidal road excitation.
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4.2 Case II: Grade C random road profile

In this case, a Grade C road profile [12], shown in
Fig. 3b is given as the random excitation to the suspension
system. The resulting system response and force history are
given in Figs. 7 and 8, respectively. In addition, the internal
state variables (x1 − y, z) are depicted in Fig. 9. The maximum
value of z is 0.0051, which agrees with zm, as defined in the
proof of Theorem 1. Some typical values of the RMS of
the acceleration of the spring, the suspension deflection
(xP1 = x1 − x2), and the tyre deflection (xP2 = x2 − xg) for the
listed four different cases are given in Table III. The results
for skyhook controller and constant input voltage v = 0, v = 2
controllers are also given in Figs 10–18 for reference. These

results indicate that the proposed controller provides accept-
able performance, which emphasizes the suppression of sus-
pension deflection (xP1) (as we have expected) and road
holding ability (tyre deflection, xP2), while the commonly
used skyhook controller focuses on the ride comfort (��x1).

4.3 Case III: Sinusoidal road profile

For the time domain analysis, a sinusoidal road input at
1.5Hz was chosen to represent the steady-state analysis
because this frequency is very close to the natural frequency
of the sprung mass. For the 1.5Hz signal, a peak-to-peak
amplitude of 5cm was chosen, xg = 0.025sin(3πt). This ampli-
tude was limited by the stroke of the MR damper. At this
amplitude, the travel across the damper was approaching the
end-stops of the damper. Figs 19–22 show time response of
displacement of sprungmass m1 and acceleration for a
sinusoidal road input for skyhook and the proposed multi-
level controller. In addition, the RMS values of the results are
also given in Table IV for passive off (v = 0), passive on
(v = 2), skyhook controller, and the proposed controller (11) .
This table indicates that the suspension system cannot be
stabilized with the passive off type controller and the skyhook
controller focuses on the ride comfort again.

V. CONCLUSIONS AND FUTURE WORKS

In this work, a Lyapunov function, consisting of the
kinematic energy and spring potential function of a suspen-
sion system plus an integral term of the hysteretic component
of an MR damper is chosen to examine the stability and
dissipativity of a system. To suppress the vibration, a multi-
level controller based on the derivative of the Lyapunov

Fig. 20. Damping force and input voltage of an MR damper
with a skyhook controller when subject to a sinusoidal
road excitation.

Fig. 21. System Response of the quarter car vehicle model with
an MR damper and a Lyapunov based multi-level
controller when subject to a sinusoidal road excitation.

Fig. 22. Damping force and input voltage of an MR damper
with a Lyapunov based multi-level controller when
subject to a sinusoidal road excitation.
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function is proposed. It requires only the measurements of
relative displacement and velocity between sprung and uns-
prung masses, the damping force, and the voltage dependent
coefficients c0, c1 and k1, which can be identified in the begin-
ning. Through numerical examples, the proposed controller
turns out to be effective, robust, and the algorithm is simple to
implement. These results indicate that this controller empha-
sizes the suppression of suspension deflection and road
holding ability, while the skyhook controller focuses on the
ride comfort. To have a compromise between all three perfor-
mance indices, a hybrid control policy can be considered. In
the future, the effects on the parameter uncertainties will be
further investigated.
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Table IV. RMS analysis for sinusoidal road excitation xg = 0.025sin(3πt).

Controller ��x1 (m/s2) xP1(m) xP2(m)

v = 0 7.8620 0.0649 0.0159
v = 2 2.33 0.0086 0.0050
skyhook (csky = 100) 2.1620 0.0137 0.0047
(11) 2.3026 0.0100 0.0049
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